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Summary
For over 15 years, the mlpack machine learning library has served as a “swiss army knife’’ for
C++-based machine learning (Curtin et al., 2013). Its efficient implementations of common
and cutting-edge machine learning algorithms have been used in a wide variety of scientific
and industrial applications. This paper overviews mlpack 4, a significant upgrade over its
predecessor (Curtin et al., 2018). The library has been significantly refactored and redesigned
to facilitate an easier prototyping-to-deployment pipeline, including bindings to other languages
(Python, Julia, R, Go, and the command line) that allow prototyping to be seamlessly performed
in environments other than C++.

Statement of Need
The use of machine learning has become ubiquitous in almost every scientific discipline and
countless commercial applications (Carleo et al., 2019; Jordan & Mitchell, 2015). There is
one important commonality to virtually all of these applications: machine learning is often
computationally intensive, due to the large number of parameters and large amounts of training
data. This was the main motivator for the original development of mlpack in the C++ language,
which allows for efficient close-to-the-metal implementations (Curtin et al., 2013).

But speed is not everything: development and deployment of applications that use machine
learning can also be significantly hampered if the overall process is too difficult or unwieldy
(Lavin et al., 2022; Paleyes et al., 2020). Furthermore, deployment environments often have
computational or engineering constraints that make a full-stack Python solution infeasible
(Fischer et al., 2020). As such, it is important that lightweight and easy-to-deploy machine
learning solutions are available. This has motivated our refactoring and redesign of mlpack
4: we pair efficient implementations with easy and lightweight deployment, making mlpack
suitable for a wide range of deployment environments. A more complete set of motivations
can be found in the mlpack vision document (mlpack community, 2021).

mlpack is a general-purpose machine learning library, targeting both academic and commercial
use; for instance, data scientists who need efficiency and ease of deployment, or, e.g., by
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researchers who need flexibility and extensibility. While there are other machine learning libraries
intended to be used from C++, many, such as FAISS (Johnson et al., 2019) and FLANN (Muja
& Lowe, 2009), are limited to a few specific algorithms, instead of a full range of machine
learning algorithms, like mlpack provides. dlib-ml (King, 2009), on the other hand, does
provide a broad toolkit of machine learning algorithms, but its extensibility is somewhat limited
as it does not use policy-based design (Alexandrescu, 2001) to provide arbitrary user-defined
behavior, and the range of machine learning algorithms provided is smaller than mlpack’s.

Functionality
The library contains a wide variety of machine learning algorithms, some of which are new to
mlpack 4. The list of algorithms includes linear regression, logistic regression, random forests,
furthest-neighbor search (Curtin & Gardner, 2016), accelerated k-means variants (Curtin,
2017), kernel density estimation (Lee & Gray, 2008), and fast max-kernel search (Curtin &
Ram, 2014). There is also a module for deep neural networks, which has implementations of
numerous layer types, activation functions, and reinforcement learning applications. Details of
the available functionality are provided in the online mlpack documentation. The efficiency of
these implementations has been shown in various works (Curtin et al., 2013; Fang & Chau,
2016) using mlpack’s benchmarking system (Edel et al., 2014).

The algorithms are available via automatically-generated bindings to Python, R, Go, Julia, and
the command line. Each of these bindings has a unified interface across the languages; for
example, a model trained in Python can be used from Julia or C++ (or any other language
with mlpack bindings). The bindings are available in each language’s package manager, as well
as system-level package managers such as apt and dnf. Furthermore, ready-to-use Docker
containers with the environment fully configured are available on DockerHub, and an interactive
C++ notebook interface via the xeus-cling project is available on BinderHub.

Once a user has developed a machine learning workflow in the language of their choice,
deployment is straightforward. The mlpack library is now header-only, and directly depends
only on three libraries: Armadillo (Sanderson & Curtin, 2016), ensmallen (Curtin et al., 2021),
and cereal. When using C++, the only linking requirement is to an efficient implementation
of BLAS and LAPACK (required via Armadillo). This significantly eases deployment; a
standalone C++ application with only a BLAS/LAPACK dependency is easily deployable to
many environments, including standard Linux-based Docker containers, Windows environments,
and resource-constrained embedded environments. To this end, mlpack’s build system now
also contains a number of tools for cross-compilation support, including the ability to easily
statically link compiled programs (important for some deployment environments).

Major Changes
Below we detail a few of the major changes present in mlpack 4. For a complete and exhaustive
list (including numerous bug fixes and new techniques), the HISTORY.md file (distributed with
mlpack) can be consulted.

Removed dependencies. In accordance with the vision document (mlpack community, 2021),
the majority of the refactoring and redesign work focused on reducing dependencies and
compilation overhead. This has motivated the replacement of the Boost C++ libraries, upon
which mlpack previously depended, with lightweight alternatives including cereal for serialization.
The entire neural network module was refactored to avoid the use of Boost (amounting to
an almost complete rewrite). This effort was rewarded handsomely: with mlpack 3, a simple
program would often require several gigabytes of memory just for compilation. After refactoring
and removing dependencies, compilation generally requires just a few hundred megabytes of
memory, and is often an order of magnitude faster.
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Interactive notebook environments. mlpack can be used in a Jupyter notebook environment
(Kluyver et al., 2016) via the xeus-cling project. This is demonstrated interactively on the
mlpack homepage. Examples of C++ notebooks can be found in the mlpack examples
repository, and these can easily be run on BinderHub.

New bindings and enhanced availability. Support for the Julia (Bezanson et al., 2017), Go (Pike,
2012), and R languages (R Core Team, 2022; Singh Parihar et al., 2022) has been added via
mlpack’s automatic binding system. These bindings can be used by installing mlpack from the
language’s package manager (Pkg.jl, go get, install.packages('mlpack')). Furthermore,
since mlpack’s reduced dependency footprint has significantly simplified the deployment process,
mlpack’s Python dependencies are now available for numerous architectures both on PyPI and
in conda-forge.

Cross-compilation support and build system improvements. mlpack’s build configuration now
supports easy cross-compilation, for instance via toolchains such as buildroot. By specifying a
few flags, a user may produce a working mlpack setup for a variety of embedded systems. This
required the implementation of a dependency auto-downloader, which is capable of downloading
OpenBLAS and compiling (if necessary) for the target architecture. The auto-downloader can
also be enabled and used for any situation, thus easing installation and deployment.
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