
mlpack 4: a fast, header-only C++ machine learning
library
Ryan R. Curtin 1, Marcus Edel 2, Omar Shrit 1, Shubham Agrawal 1,
Suryoday Basak 3, James J. Balamuta 4, Ryan Birmingham 5, Kartik
Dutt 6, Dirk Eddelbuettel 7, Rishabh Garg 8, Shikhar Jaiswal 9, Aakash
Kaushik 1, Sangyeon Kim 10, Anjishnu Mukherjee 11, Nanubala Gnana
Sai 1, Nippun Sharma 8, Yashwant Singh Parihar 12, Roshan Swain 1,
and Conrad Sanderson 13

1 Independent Researcher 2 Collabora Ltd 3 Pennsylvania State University 4 Departments of Statistics
and Informatics, University of Illinois, Urbana-Champaign 5 Emory University 6 Delhi Technological
University 7 Department of Statistics, University of Illinois, Urbana-Champaign 8 Indian Institute of
Technology Mandi 9 Microsoft Research India 10 NAVER WEBTOON AI 11 George Mason University
12 Department of Computer Science and Engineering, IIT Bombay 13 Data61/CSIRO and Griffith
University

DOI: 10.21105/joss.05026

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @sandeep-ps
• @zhangjy-ge

Submitted: 25 November 2022
Published: 01 February 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
For over 15 years, the mlpack machine learning library has served as a “swiss army knife’’ for
C++-based machine learning (Curtin et al., 2013). Its efficient implementations of common
and cutting-edge machine learning algorithms have been used in a wide variety of scientific
and industrial applications. This paper overviews mlpack 4, a significant upgrade over its
predecessor (Curtin et al., 2018). The library has been significantly refactored and redesigned
to facilitate an easier prototyping-to-deployment pipeline, including bindings to other languages
(Python, Julia, R, Go, and the command line) that allow prototyping to be seamlessly performed
in environments other than C++.

Statement of Need
The use of machine learning has become ubiquitous in almost every scientific discipline and
countless commercial applications (Carleo et al., 2019; Jordan & Mitchell, 2015). There is
one important commonality to virtually all of these applications: machine learning is often
computationally intensive, due to the large number of parameters and large amounts of training
data. This was the main motivator for the original development of mlpack in the C++ language,
which allows for efficient close-to-the-metal implementations (Curtin et al., 2013).

But speed is not everything: development and deployment of applications that use machine
learning can also be significantly hampered if the overall process is too difficult or unwieldy
(Lavin et al., 2022; Paleyes et al., 2020). Furthermore, deployment environments often have
computational or engineering constraints that make a full-stack Python solution infeasible
(Fischer et al., 2020). As such, it is important that lightweight and easy-to-deploy machine
learning solutions are available. This has motivated our refactoring and redesign of mlpack
4: we pair efficient implementations with easy and lightweight deployment, making mlpack
suitable for a wide range of deployment environments. A more complete set of motivations
can be found in the mlpack vision document (mlpack community, 2021).

mlpack is a general-purpose machine learning library, targeting both academic and commercial
use; for instance, data scientists who need efficiency and ease of deployment, or, e.g., by

Curtin et al. (2023). mlpack 4: a fast, header-only C++ machine learning library. Journal of Open Source Software, 8(82), 5026. https:
//doi.org/10.21105/joss.05026.

1

https://orcid.org/0000-0002-9903-8214
https://orcid.org/0000-0001-5445-7303
https://orcid.org/0000-0002-8621-3052
https://orcid.org/0000-0001-8713-4682
https://orcid.org/0000-0002-1982-1787
https://orcid.org/0000-0003-2826-8458
https://orcid.org/0000-0002-7943-6346
https://orcid.org/0000-0003-3877-0142
https://orcid.org/0000-0001-6419-907X
https://orcid.org/0000-0003-0398-0887
https://orcid.org/0000-0002-3683-3931
https://orcid.org/0000-0003-1079-8338
https://orcid.org/0000-0003-0717-0240
https://orcid.org/0000-0003-4012-8466
https://orcid.org/0000-0003-0774-7994
https://orcid.org/0000-0003-0365-2613
https://orcid.org/0000-0003-3492-0377
https://orcid.org/0000-0002-7262-8230
https://orcid.org/0000-0002-0049-4501
https://doi.org/10.21105/joss.05026
https://github.com/openjournals/joss-reviews/issues/5026
https://github.com/mlpack/mlpack
https://doi.org/10.5281/zenodo.7587252
https://osorensen.rbind.io/
https://orcid.org/0000-0003-0724-3542
https://github.com/sandeep-ps
https://github.com/zhangjy-ge
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05026
https://doi.org/10.21105/joss.05026


researchers who need flexibility and extensibility. While there are other machine learning libraries
intended to be used from C++, many, such as FAISS (Johnson et al., 2019) and FLANN (Muja
& Lowe, 2009), are limited to a few specific algorithms, instead of a full range of machine
learning algorithms, like mlpack provides. dlib-ml (King, 2009), on the other hand, does
provide a broad toolkit of machine learning algorithms, but its extensibility is somewhat limited
as it does not use policy-based design (Alexandrescu, 2001) to provide arbitrary user-defined
behavior, and the range of machine learning algorithms provided is smaller than mlpack’s.

Functionality
The library contains a wide variety of machine learning algorithms, some of which are new to
mlpack 4. The list of algorithms includes linear regression, logistic regression, random forests,
furthest-neighbor search (Curtin & Gardner, 2016), accelerated k-means variants (Curtin,
2017), kernel density estimation (Lee & Gray, 2008), and fast max-kernel search (Curtin &
Ram, 2014). There is also a module for deep neural networks, which has implementations of
numerous layer types, activation functions, and reinforcement learning applications. Details of
the available functionality are provided in the online mlpack documentation. The efficiency of
these implementations has been shown in various works (Curtin et al., 2013; Fang & Chau,
2016) using mlpack’s benchmarking system (Edel et al., 2014).

The algorithms are available via automatically-generated bindings to Python, R, Go, Julia, and
the command line. Each of these bindings has a unified interface across the languages; for
example, a model trained in Python can be used from Julia or C++ (or any other language
with mlpack bindings). The bindings are available in each language’s package manager, as well
as system-level package managers such as apt and dnf. Furthermore, ready-to-use Docker
containers with the environment fully configured are available on DockerHub, and an interactive
C++ notebook interface via the xeus-cling project is available on BinderHub.

Once a user has developed a machine learning workflow in the language of their choice,
deployment is straightforward. The mlpack library is now header-only, and directly depends
only on three libraries: Armadillo (Sanderson & Curtin, 2016), ensmallen (Curtin et al., 2021),
and cereal. When using C++, the only linking requirement is to an efficient implementation
of BLAS and LAPACK (required via Armadillo). This significantly eases deployment; a
standalone C++ application with only a BLAS/LAPACK dependency is easily deployable to
many environments, including standard Linux-based Docker containers, Windows environments,
and resource-constrained embedded environments. To this end, mlpack’s build system now
also contains a number of tools for cross-compilation support, including the ability to easily
statically link compiled programs (important for some deployment environments).

Major Changes
Below we detail a few of the major changes present in mlpack 4. For a complete and exhaustive
list (including numerous bug fixes and new techniques), the HISTORY.md file (distributed with
mlpack) can be consulted.

Removed dependencies. In accordance with the vision document (mlpack community, 2021),
the majority of the refactoring and redesign work focused on reducing dependencies and
compilation overhead. This has motivated the replacement of the Boost C++ libraries, upon
which mlpack previously depended, with lightweight alternatives including cereal for serialization.
The entire neural network module was refactored to avoid the use of Boost (amounting to
an almost complete rewrite). This effort was rewarded handsomely: with mlpack 3, a simple
program would often require several gigabytes of memory just for compilation. After refactoring
and removing dependencies, compilation generally requires just a few hundred megabytes of
memory, and is often an order of magnitude faster.

Curtin et al. (2023). mlpack 4: a fast, header-only C++ machine learning library. Journal of Open Source Software, 8(82), 5026. https:
//doi.org/10.21105/joss.05026.

2

https://www.mlpack.org/docs.html
https://github.com/QuantStack/xeus-cling
https://github.com/USCILab/cereal
https://www.boost.org
https://github.com/USCILab/cereal
https://doi.org/10.21105/joss.05026
https://doi.org/10.21105/joss.05026


Interactive notebook environments. mlpack can be used in a Jupyter notebook environment
(Kluyver et al., 2016) via the xeus-cling project. This is demonstrated interactively on the
mlpack homepage. Examples of C++ notebooks can be found in the mlpack examples
repository, and these can easily be run on BinderHub.

New bindings and enhanced availability. Support for the Julia (Bezanson et al., 2017), Go (Pike,
2012), and R languages (R Core Team, 2022; Singh Parihar et al., 2022) has been added via
mlpack’s automatic binding system. These bindings can be used by installing mlpack from the
language’s package manager (Pkg.jl, go get, install.packages('mlpack')). Furthermore,
since mlpack’s reduced dependency footprint has significantly simplified the deployment process,
mlpack’s Python dependencies are now available for numerous architectures both on PyPI and
in conda-forge.

Cross-compilation support and build system improvements. mlpack’s build configuration now
supports easy cross-compilation, for instance via toolchains such as buildroot. By specifying a
few flags, a user may produce a working mlpack setup for a variety of embedded systems. This
required the implementation of a dependency auto-downloader, which is capable of downloading
OpenBLAS and compiling (if necessary) for the target architecture. The auto-downloader can
also be enabled and used for any situation, thus easing installation and deployment.

Acknowledgements
Development of mlpack is community-led. It is the product of hard work by over 220 individuals
(at the time of writing). We are also indebted to people that have provided bug reports over
the years. The development has been supported by Google, via a decade-long participation the
Google Summer of Code program, and also by NumFOCUS, which fiscally sponsors mlpack.

References
Alexandrescu, A. (2001). Modern C++ Design: Generic programming and design patterns

applied. Addison-Wesley.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., &
Zdeborová, L. (2019). Machine learning and the physical sciences. Reviews of Modern
Physics, 91(4), 045002. https://doi.org/10.1103/RevModPhys.91.045002

Curtin, R. R. (2017). A dual-tree algorithm for fast k-means clustering with large k. SIAM
International Conference on Data Mining (SDM ’17), 300–308. https://doi.org/10.1137/1.
9781611974973.34

Curtin, R. R., Cline, J. R., Slagle, N. P., March, W. B., Ram, P., Mehta, N. A., & Gray, A.
G. (2013). MLPACK: A scalable C++ machine learning library. The Journal of Machine
Learning Research, 14(1), 801–805.

Curtin, R. R., Edel, M., Lozhnikov, M., Mentekidis, Y., Ghaisas, S., & Zhang, S. (2018).
Mlpack 3: A fast, flexible machine learning library. Journal of Open Source Software, 3(26),
726. https://doi.org/10.21105/joss.00726

Curtin, R. R., Edel, M., Prabhu, R. G., Basak, S., Lou, Z., & Sanderson, C. (2021). The
ensmallen library for flexible numerical optimization. Journal of Machine Learning Research,
22, 1–6.

Curtin, R. R., & Gardner, A. B. (2016). Fast approximate furthest neighbors with data-
dependent candidate selection. International Conference on Similarity Search and Applica-
tions (SISAP 2016), 221–235. https://doi.org/10.1007/978-3-319-46759-7_17

Curtin et al. (2023). mlpack 4: a fast, header-only C++ machine learning library. Journal of Open Source Software, 8(82), 5026. https:
//doi.org/10.21105/joss.05026.

3

https://github.com/QuantStack/xeus-cling
https://www.mlpack.org
https://github.com/mlpack/examples
https://github.com/mlpack/examples
https://buildroot.org
https://github.com/xianyi/OpenBLAS
https://doi.org/10.1137/141000671
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1137/1.9781611974973.34
https://doi.org/10.1137/1.9781611974973.34
https://doi.org/10.21105/joss.00726
https://doi.org/10.1007/978-3-319-46759-7_17
https://doi.org/10.21105/joss.05026
https://doi.org/10.21105/joss.05026


Curtin, R. R., & Ram, P. (2014). Dual-tree fast exact max-kernel search. Statistical Analysis
and Data Mining: The ASA Data Science Journal, 7(4), 229–253. https://doi.org/10.
1002/sam.11218

Edel, M., Soni, A., & Curtin, R. R. (2014). An automatic benchmarking system. NIPS
Workshop on Software Engineering for Machine Learning.

Fang, D., & Chau, D. H. (2016). M3: Scaling up machine learning via memory mapping.
International Conference on Management of Data, 2249–2250.

Fischer, L., Ehrlinger, L., Geist, V., Ramler, R., Sobiezky, F., Zellinger, W., Brunner, D.,
Kumar, M., & Moser, B. (2020). AI System Engineering—Key Challenges and Lessons
Learned. Machine Learning and Knowledge Extraction, 3(1), 56–83. https://doi.org/10.
3390/make3010004

Johnson, J., Douze, M., & Jégou, H. (2019). Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7 (3), 535–547. https://doi.org/10.1109/tbdata.2019.2921572

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.
Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415

King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine Learning
Research, 10, 1755–1758.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., Kelley, K.,
Hamrick, J. B., Grout, J., Corlay, S., & others. (2016). Jupyter Notebooks—a publishing
format for reproducible computational workflows. Proceedings of the 20th International Con-
ference on Electronic Publishing, 87–90. https://doi.org/10.3233/978-1-61499-649-1-87

Lavin, A., Gilligan-Lee, C. M., Visnjic, A., Ganju, S., Newman, D., Ganguly, S., Lange, D.,
Baydin, A. G., Sharma, A., Gibson, A., & others. (2022). Technology readiness levels
for machine learning systems. Nature Communications, 13(1), 1–19. https://doi.org/10.
21203/rs.3.rs-133138/v1

Lee, D., & Gray, A. G. (2008). Fast high-dimensional kernel summations using the Monte Carlo
Multipole Method. Advances in Neural Information Processing Systems, 21, 929–936.

mlpack community. (2021). mlpack: A vision for an efficient prototype-to-deployment machine
learning library. https://www.mlpack.org/papers/vision.pdf.

Muja, M., & Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic algorithm
configuration. Proceedings of the 2009 International Conference on Computer Vision Theory
and Applications (VISAPP ’09), 331–340. https://doi.org/10.5220/0001787803310340

Paleyes, A., Urma, R.-G., & Lawrence, N. D. (2020). Challenges in deploying machine learning:
A survey of case studies. ACM Computing Surveys (CSUR). https://doi.org/10.1145/
3533378

Pike, R. (2012). Go at Google: Language design in the service of software engineering.
Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications:
Software for Humanity, 5–6.

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation
for Statistical Computing. https://www.R-project.org/

Sanderson, C., & Curtin, R. R. (2016). Armadillo: A template-based C++ library for linear
algebra. Journal of Open Source Software, 1(2), 26. https://doi.org/10.21105/joss.00026

Singh Parihar, Y., Curtin, R. R., Eddelbuettel, D., Balamuta, J., & others. (2022). mlpack:
“Rcpp” integration for the “mlpack” library. https://CRAN.R-project.org/package=mlpack

Curtin et al. (2023). mlpack 4: a fast, header-only C++ machine learning library. Journal of Open Source Software, 8(82), 5026. https:
//doi.org/10.21105/joss.05026.

4

https://doi.org/10.1002/sam.11218
https://doi.org/10.1002/sam.11218
https://doi.org/10.3390/make3010004
https://doi.org/10.3390/make3010004
https://doi.org/10.1109/tbdata.2019.2921572
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.21203/rs.3.rs-133138/v1
https://doi.org/10.21203/rs.3.rs-133138/v1
https://www.mlpack.org/papers/vision.pdf
https://doi.org/10.5220/0001787803310340
https://doi.org/10.1145/3533378
https://doi.org/10.1145/3533378
https://www.R-project.org/
https://doi.org/10.21105/joss.00026
https://CRAN.R-project.org/package=mlpack
https://doi.org/10.21105/joss.05026
https://doi.org/10.21105/joss.05026

	Summary
	Statement of Need
	Functionality
	Major Changes
	Acknowledgements
	References

